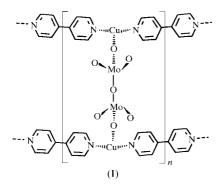
Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Chains of (4,4'-bipyridyl)copper(I) bridged by dimolybdate units

Wan-Sheng You, En-Bo Wang,* Lin Xu, Chang-Wen Hu and Guo-You Luan


Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, People's Republic of China Correspondence e-mail: huchw@nenu.edu.cn

Received 27 October 1999 Accepted 22 November 1999

The crystal structure of the title compound, poly[bis-[copper(I)- μ -(4,4'-bipyridyl)-N:N']- μ -dimolybdato-O:O'], [Cu₂(C₁₀H₈N₂)₂{Mo₂O₇}]_n, consists of {Mo₂O₇}²⁻ units (with the central O atom lying on twofold symmetry axes) and [Cu(4,4'-bipy)]_nⁿ⁺ chains (bipy = bipyridyl); the chains are generated by a *c*-glide-plane operation. The {Mo₂O₇}²⁻ units are covalently bridged to two [Cu(4,4'-bipy)]_nⁿ⁺ chains, forming a complex with a bridged double-chain structure. The Cu–O and Cu–N distances are 2.191 (3) and 1.933 (3) Å, respectively.

Comment

While bidendate bipyridyl complexes with copper(I) are known, those with 4,4'-bipy are uncommon (Hathaway, 1987). In recent years, however, some groups have reported a few 4,4'-bipy complexes with an open framework structure, such as $[Cu(4,4'-bipy)Cl]_n$ (Yaghi & Li, 1995*a*), which was synthesized in non-aqueous solvents, $[Cu(4,4'-bipy)_{1.5}NO_3(H_2O)_{1.25}]$ (Yaghi & Li, 1995*b*), and $[Cu(4,4'-bipy)Mo_8O_{26}]$ and $[\{Cu(4,4'-bipy)\}_4Mo_{15}O_{47}]$ (Hagrman *et al.*, 1997), which were synthesized under hydrothermal conditions. We report here the structure of a new compound, (I), which is the first example of a polyoxoanion-bridged copper(I) complex.

The structure of (I) consists of a covalently bridged framework built up from $\{Mo_2O_7\}^{2-}$ units and $[Cu(4,4'-bipy)]_n^{n+}$ chains (Fig. 1). The dimolybdate units are structu-

rally related to the discrete dimolybdate anions which were isolated as the tetrabutylammonium salt by Day *et al.* (1977). The unit possesses crystallographic C2 symmetry and is built up from two distorted MoO₄ tetrahedra by sharing a vertex. The Mo···Mo distance is 3.713 (1) Å. The $\{Mo_2O_7\}^{2-}$ unit has three kinds of Mo–O bonds: 1.709 (4) and 1.721 (3) Å for Mo–O_{terminal}, 1.869 (1) Å for Mo–O_{bridge} and 1.732 (3) Å for Mo–O_{Cu}. The Mo–O–Mo angle is 166.9 (3)°, which is greater than that of the discrete $\{Mo_2O_7\}^{2-}$ anion (153.6°).

Copper(I) ions and 4,4'-bipy ligands are linked by means of a coordination bond, forming $[Cu(4,4'-bipy)]_n^{n+}$ chains. Two $[Cu(4,4'-bipy)]_n^{n+}$ chains are covalently linked through $\{Mo_2O_7\}^{2-}$ units to form $[Cu_2(4,4'-bipy)_2\{Mo_2O_7\}]_n$ with a bridged double-chain structure. The distance of the two chains is 3.376 (7) Å (based on the $C1\cdots C1A$ distance). It is interesting that $\{Mo_2O_7\}^{2-}$ units are positioned alternately on both sides of the two chains.

The title complex displays distorted trigonal planar geometry at the copper(I) centre. The N1–Cu–N2ⁱ, N1–Cu–O1 and N2ⁱ–Cu–O1 angles are 152.59 (14), 100.78 (12) and 103.37 (12)°, respectively [symmetry code: (i) x, -1 - y, $\frac{1}{2} + z$]. Atoms N1, N2ⁱ, O1 and Cu are nearly in the same plane. The two pyridine rings of the bipyridyl molecule are not coplanar; the bipyridyl dihedral angle is 34.2 (6)°. As the calculated valence sum of Mo is 6.06 (Brown & Altermatt, 1985), the valence sum of Cu is deduced to be 1.

Experimental

The synthesis of (I) was carried out by the hydrothermal reaction of Na_2MoO_4 ·2H₂O, CuSO₄·5H₂O, 4,4'-bipy, As₂O₃ and H₂O (molar ratio 1:1:1:0.5:500) in a 30 ml Teflon-lined stainless steel autoclave for 5 d at 443 K. The resulting rectangular parallelepiped orange crystals were separated from the green paste by washing in water after cooling down to room temperature.

Crystal data

$[Cu_2(C_{10}H_8N_2)_2\{Mo_2O_7\}]$	Mo $K\alpha$ radiation
$M_r = 743.33$	Cell parameters from 33
Orthorhombic, Pbcn	reflections
a = 11.839 (2) Å	$\theta = 4.89 - 11.53^{\circ}$
b = 9.108 (2) Å	$\mu = 2.942 \text{ mm}^{-1}$
c = 21.319(4) Å	T = 293 (2) K
V = 2298.8 (8) Å ³	Block, orange
Z = 4	$0.50 \times 0.42 \times 0.38 \text{ mm}$
$D_x = 2.148 \text{ Mg m}^{-3}$	
Data collection	
Siemens P4 diffractometer	$R_{\rm int} = 0.019$

```
biometry 1 + diminication (1970)

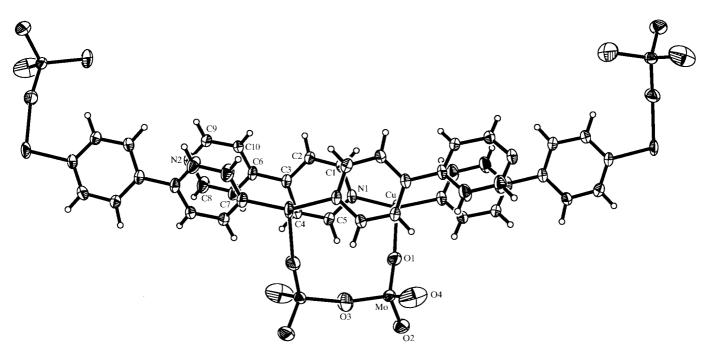
2\theta/\omega scans

Absorption correction: empirical

(North et al., 1968)

T_{min} = 0.229, T_{max} = 0.325

2750 measured reflections


2016 independent reflections

1549 reflections with I > 2\sigma(I)
```

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.069$ S = 0.8992016 reflections 191 parameters $R_{int} = 0.019$ $\theta_{max} = 25^{\circ}$ $h = -1 \rightarrow 14$ $k = -1 \rightarrow 10$ $l = -25 \rightarrow 1$ 3 standard reflections every 97 reflections intensity decay: none

All H-atoms parameters refined $w = 1/[\sigma^2(F_o^2) + (0.0414P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = -0.001$ $\Delta\rho_{max} = 0.510 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.901 \text{ e} \text{ Å}^{-3}$

Figure 1 A view of (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.

Table 1Selected geometric parameters (Å, $^{\circ}$).

Mo-O4	1.709 (4)	Cu-O1	2.191 (3)
Mo-O2	1.721 (3)	N1-C1	1.343 (5)
Mo-O1	1.732 (3)	N1-C5	1.344 (5)
Mo-O3	1.8687 (8)	N2-C8	1.332 (5)
Cu-N1	1.933 (3)	N2-C9	1.339 (5)
Cu-N2 ⁱ	1.933 (3)	C3-C6	1.489 (5)
O4-Mo-O2	109.2 (2)	O2-Mo-O3	108.8 (2)
O4-Mo-O1	109.3 (2)	O1-Mo-O3	110.1 (2)
O2-Mo-O1	110.2(2)	N1-Cu-O1	100.8 (1)
O4-Mo-O3	109.3 (2)		

Symmetry code: (i) $x, -1 - y, \frac{1}{2} + z$.

All H atoms were refined and C–H distances are in the range 0.87 (5)–0.98 (5) Å.

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL (Siemens, 1994); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was funded by the National Nature Science Foundation of China.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1440). Services for accessing these data are described at the back of the journal.

References

- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-249.
- Day, V. W., Fredrich, M. F., Klemperer, W. G. & Shum, W. (1977). J. Am. Chem. Soc. 99, 6146–6148.
- Hagrman, D., Zubiet, C., Rose, D. J., Zubiet, J. & Haushalter, R. C. (1997). Angew. Chem. Int. Ed. Engl. 36, 873–876.
- Hathaway, B. J. (1987). Comprehensive Coordination Chemistry, edited by G. Wilkinson, R. D. Gillard & J. A. McCleverty, pp. 534–774. Oxford: Pergamon.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. University of Göttingen, Germany.
- Siemens (1994). XSCANS (Version 2.1) and SHELXTL (Release 5.03). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Yaghi, O. M. & Li, G. (1995a). Angew. Chem. Int. Ed. Engl. 34, 207–209.
- Yaghi, O. M. & Li, H. (1995b). J. Am. Chem. Soc. 117, 10401-10402.